rozwiązanie. Rozwiązanie zadania. Dla każdej dodatniej liczby b wyrażenie (2√b⋅4√b)^1/3 jest równe A. b² B. b^0,25 C. b^8/3 C. b^4/3 Wzory na potęgi. Zamiana pierwiastka na potęgę z wykładnikiem 1/n. Iloczyn potęg. Potęgowanie potęgi . Więcej szczegółów: Rozkładanie na czynniki pierwsze: √x 3 √x y √x: Obliczanie pierwiastka z liczby: 1 2 5 3 √x = 5 1 6 y √x 4 = 2 Więcej szczegółów: Pierwiastek z liczby, Rozdzielanie argumentów funkcji: log 9, 3 = 2: log: Obliczanie logarytmu: log 1 6, 2 = 4 Więcej szczegółów: Logarytmy: e: Wprowadzanie stałej Zakres maturalny obejmuje również potęgi o wykładniku wymiernym (ułamkowym). Są one ściśle powiązane z pierwiastkami, które możemy zamienić na potęgę o wykładniku ułamkowym i odwrotnie. Wykładnik ułamkowy może być zapisany zarówno za pomocą ułamka zwykłego, jak i ułamka dziesiętnego. Przykłady: Zamiana potęgi Potęgi i pierwiastki - najważniejsze wzory. W tym miejscu znajduje się zestawienie najważniejszych wzorów z działań na potęgach i pierwiastkach. Przykłady zastosowania tych wzorów znajdziesz w kolejnych rozdziałach. 3 pierwiastki z 7 i pierwiastek z 63 to jest ta sama liczba, ale zapisana na 2 różne sposoby. Spróbuj teraz samodzielnie włączyć liczbę pod znak pierwiastka. Możesz zapauzować teraz film, rozwiązać ten przykład, a potem sprawdzić swoje obliczenia z moimi. Mam tutaj 6 razy pierwiastek z dwóch. Zamieńmy szóstkę na pierwiastek z 36. Liczba podpierwiastkowa mówi nam o tym na jakiej liczbie będziemy przeprowadzać operację (liczba wyjściowa). Jej odpowiednikiem w potęgowaniu jest podstawa potęgi. Z kolei stopień pierwiastka informuje nas o tym na ile jednakowych czynników mamy rozdzielać liczbę wyjściową (ppw). I pewnie już domyślamy się, że odpowiednikiem . Wzór na potęgę pierwiastka o tym samym wykładniku ma postać: \((\sqrt[n]{a})^n = a\), gdzie \(a \geq 0, b \geq 0, \: i \: n \in N \setminus \left \{ 0, 1 \right \}\) Oznacza to, że \(a \: i \: b\) są to liczby większę bądź równe \(0\), \(n\) jest liczbą naturalną z wyłączeniem liczb \(0\) i \(1\) Pierwiastkowanie Wzór na mnożenie pierwiastków Wzór na dzielenie pierwiastków Wzór na pierwiastek pierwiastka Wzór na potęgę pierwiastka Wzór na włączanie liczby pod pierwiastek Wzór na pierwiastek z liczby \(a^n\) Wzór na sumę pierwiastków Wzór na wartość bezwzględną pierwiastków Artur: log4 8= dlaczego nagle wchodzi pierwiastek ? 19 lut 16:08 Jakub: Chcę 2 zamienić na potęgę 4, ponieważ taka jest podstawa logarytmu. Robię to w ten sposób: 2 = √4 = 412 19 lut 16:20 Aga: ja nie rozumię tego 3 przykładu skąd się tam nagle bierze pierwiastek 4 stopnia z 16 24 mar 12:54 zatopiona we wdzięczności: kocham Cię twórco tej strony bardziej niż Allaha, Chrystusa i Budde. Love and peace. AmenT 20 kwi 09:37 ?: a jak się zamieni w 3 przykładzie 2 na potęge 4 to wyjdzie 7,5 1 maj 13:00 Jakub: 128 nie zamienisz na potęgę 4. 1 maj 15:11 Rzeszowiak: Naprawdę strona jest bardzo użyteczna Ale jak się ma czuba z matmy zamiast nauczyciela, to nawet to nie pomoże 8 maj 10:20 Ola, ola. : Ta strona zastępuje mi nieudolnego nauczyciela w szkole, który pędzi z materiałem tak, iż nikt nic nie rozumie. A nie jesteśmy ułomni, skoro potrafimy si ę sami tego nauczyć, potrzebujemy jedynie takich stron jak ta 9 paź 21:37 Wykręcona: log{16}128= log16 44= 4*log164 =4*1/2 (..bo 161/2=√16=4..)= 2 Dlaczego tak to się nie udaje? 30 gru 22:43 Wykręcona: Powyżej skorzystałam ze wzoru : loga xr = r * loga x bardzo proszę o szybką odpowiedź gdyż przygotowuję się do egzaminu (który będzie za 2 dni) tylko i wyłącznie dzięki tej stronie i cały czas popełniam podobne błędy, nie mogąc chyba pojąć istoty tych logarytmów... 30 gru 23:55 Wykręcona: ojoj... pzepraszam 4*4 to nie jest 128... już rozumiem. Prosze skasować te...głupoty a zostawić tylko to, że zbyt dużo nauki po długim bimbaniu ryje banie. Przepraszam jeszcze raz, dziękuje za tę objawiającą stronę. Jak będę przy kasie to prześle coś ale prosze o umieszczenie nr konta bo nie mam pay pala. tralalalaaa 31 gru 00:39 Wykręcona: 31 gru 00:40 adam: dlaczego w tym ostatnim przykladzie jest 4√16?prosze o szybka odp. 23 kwi 21:18 Jakub: Chcę mieć zamiast 128 liczbę 16 do jakieś potęgi. Najpierw zamieniłem 128 na 27, a następnie 2 na 4√16. Mogłem, bo 2 = 4√16. 23 kwi 23:04 adam: dziekuje teraz zrozumialem 23 kwi 23:24 Daniel: log9√3 jak to rozwiązać 24 kwi 18:53 Daniel: ja na wasze przykłady uczyłem się inną metodą np log327=b 3b=27 31(b)=33 usuwamy 3 i otrzymujemy 1b=3 b=1/3 24 kwi 18:57 meszek leszek: daniel nie badz debil 2 lis 14:18 mmm: Bardzo mnie zastanawia, czemu to nie prowadzi to dobrego wyniku (z którymi wzorami się kłóci): log16128=log1627 = log1622+5 = log161612+5= log1616112 = 112 1612= 22, więc jeśli 22+5 to czy jest coś nie tak w zamianie tego na 1612+5 ? Jeśli tak to dlaczego? A może gdzieś indziej zrobiłam błąd? 3 kwi 14:44 Jakub: Masz potęgę 22+5. W wykładniku robisz coś takiego 2+5 = 4*12 + 5 = 4(12 + 5) i później to 4 wykorzystujesz do spotęgowania 2 i otrzymujesz 16. Tak nie można wyciągać przed nawias. Wyciąganie przed nawias z sumy (różnicy) odbywa się zawsze ze wszystkich składników nawiasu. 2 + 5 = 4*12 + 4 * 54 = 4(12 + 54) 5 kwi 21:46 Gustlik: Jeżeli liczba logarytmowana nie jest łatwą do znalezienia potegą podstawy logarytmu, to logbx najlepiej stosować wzór na zmianę podstawy logarytmu: logax= i zamienić logba "niewygodną" podstawę na "wygodną". Czyli szukam "wspólnej" podstawy dla obu liczb, takiej, że i podstawa logarytmu i liczba logarytmowana są jej potęgami i sprowadzam do logarytmu o tej podstawie. Zamiast jednego trudnego logarytmu bedziemy mieli dwa łatwe. log28 3 Np. log48== − zamieniam podstawę 4 na 2, bo i 4 i 8 są potęgami 2 i log24 2 logarytmem o podstawie 2 łatwiej je zlogarytmować. log327 3 Analogicznie: log927== log39 2 log2128 7 log16128== . log216 4 24 sie 00:50

zamiana pierwiastka na potęge